Transforming unstructured natural language descriptions into measurable process performance indicators using Hidden Markov Models
نویسندگان
چکیده
Monitoring process performance is an important means for organizations to identify opportunities to improve their operations. The definition of suitable Process Performance Indicators (PPIs) is a crucial task in this regard. Because PPIs need to be in line with strategic business objectives, the formulation of PPIs is a managerial concern. Managers typically start out to provide relevant indicators in the form of natural language PPI descriptions. Therefore, considerable time and effort have to be invested to transform these descriptions into PPI definitions that can actually be monitored. This work presents an approach that automates this task. The presented approach transforms an unstructured natural language PPI description into a structured notation that is aligned with the implementation underlying a business process. To do so, we combine Hidden Markov Models and semantic matching techniques. A quantitative evaluation on the basis of a data collection obtained from practice demonstrates that our approach works accurately. Therefore, it represents a viable automated alternative to an otherwise laborious manual endeavor.
منابع مشابه
A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data
In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and...
متن کاملHidden Markov Models Suitable for Text Generation
The paper presents the application of Hidden Markov Models to text generation in Polish language. A program generating text, taking advantage of Hidden Markov Models was developed. The program uses a reference text to learn the possible sequences of letters. The results of text processing have been also discussed. The presented approach can be also helpful in speech recognition process. Key-Wor...
متن کاملMAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملAn Empirical Exploration of Hidden Markov Models: From Spelling Recognition to Speech Recognition
Hidden Markov models play a critical role in the modelling and problem solving of important AI tasks such as speech recognition and natural language processing. However, the students often have difficulty in understanding the essence and applications of Hidden Markov models in the context of a cursory introductory coverage of the subject. In this paper, we describe an empirical approach to expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Syst.
دوره 71 شماره
صفحات -
تاریخ انتشار 2017